Burn injury differentially alters whole-blood and organ glutathione synthesis rates: An experimental model

نویسندگان

  • Zhe-Wei Fei
  • Vernon R. Young
  • Xiao-Ming Lu
  • Andrew B. Rhodes
  • Ronald G. Tompkins
  • Alan J. Fischman
  • Yong-Ming Yu
چکیده

Previous studies from our laboratories revealed a reduced rate of whole-blood (WB) glutathione (GSH) synthesis in severely burned patients. To determine whether WB GSH metabolism is an indicator of the status of GSH metabolism in one or more of the major organs, we used a burn rabbit model to determine GSH concentrations and rates of synthesis in WB, liver, lungs, kidney, and skeletal muscle. L-[1-(13)C]-cysteine was infused intravenously for 6 h in rabbits at 3 days post-burn and in sham burn controls. WB and organ (13)C-enrichment of cysteine and GSH was determined by gas chromatography/mass spectrometry. Plasma cysteine metabolic flux was increased significantly (P < 0.01) following burn injury. WB, liver, and lung GSH concentrations (P = 0.054, P < 0.05, and P < 0.05, respectively) and fractional rates of GSH synthesis (P < 0.05, P < 0.01, and P < 0.05, respectively) were reduced at 3 days post-burn. Kidney was unaffected. There also appears to be an increased rate of GSH transport out of the liver after burn injury. Hence, there is a differential impact of burn injury on tissue and organ GSH status, with WB qualitatively reflecting the changes in lung and liver. It will be important to determine whether these changes are due to alterations in the intrinsic capacity for GSH synthesis and/or availability of amino acid precursors of GSH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma L-5-oxoproline kinetics and whole blood glutathione synthesis rates in severely burned adult humans.

Compromised glutathione homeostasis is associated with increased morbidity in various disease states. We evaluated the kinetics of L-5-oxoproline, an intermediate in the gamma-glutamyl cycle of glutathione production, in fourteen severely burned adults by use of a primed, constant intravenous infusion of L-5-[1-(13)C]oxoproline. In nine of these patients, whole blood glutathione synthesis and p...

متن کامل

Depletion of Serotonin Synthesis with p-CPA Pretreatment Alters EEG in Urethane Anesthetized Rats under Whole Body Hyperthermia

Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Methods: Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) wh...

متن کامل

Effects of glycyl-glutamine dipeptide supplementation on myocardial damage and cardiac function in rats after severe burn injury.

Glutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats. Seventy-two Wistar rats were randomly divided into three groups: normal control (C), burned control (B) and glycyl-glut...

متن کامل

اثر N-Acetylcystein  در بیماران مبتلا به آسیب حاد ریوی تحت تهویه مکانیکی: مطالعه بر 50 بیمار

Background: Acute lung injury (ALI) is a pulmonary pathology occuring in context of infection, trauma, burn, and sepsis. Tissue injury and release of chemical mediators result in tissue damage and organ failure especially respiratory failure. Many therapeutic modalities including vitamin E, allopurinol, and N-acetylcystein (NAC) have been used to decrease levels of inflammatory factors and to c...

متن کامل

Burn injury causes mitochondrial dysfunction in skeletal muscle.

Severe burn trauma is generally followed by a catabolic response that leads to muscle wasting and weakness affecting skeletal musculature. Here, we perform whole-genome expression and in vivo NMR spectroscopy studies to define respectively the full set of burn-induced changes in skeletal muscle gene expression and the role of mitochondria in the altered energy expenditure exhibited by burn pati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013